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useful for analyzing situations in which we perform repeated random trials. For
example, indicator random variables give us a simple way to arrive at the result of
equation (C.36). In this equation, we compute the number of heads in n coin flips
by considering separately the probability of obtaining 0 heads, 1 heads, 2 heads,
etc. However, the simpler method proposed in equation (C.37) actually implicitly
uses indicator random variables. Making this argument more explicit, we can let Xi

be the indicator random variable associated with the event in which the i th flip
comes up heads. Letting Yi be the random variable denoting the outcome of the i th
flip, we have that Xi = I {Yi = H }. Let X be the random variable denoting the
total number of heads in the n coin flips, so that

X =
n∑

i=1

Xi .

We wish to compute the expected number of heads, so we take the expectation of
both sides of the above equation to obtain

E [X ] = E

[
n∑

i=1

Xi

]

.

The left side of the above equation is the expectation of the sum of n random vari-
ables. By Lemma 5.1, we can easily compute the expectation of each of the random
variables. By equation (C.20)—linearity of expectation—it is easy to compute the
expectation of the sum: it equals the sum of the expectations of the n random
variables. Linearity of expectation makes the use of indicator random variables a
powerful analytical technique; it applies even when there is dependence among the
random variables. We now can easily compute the expected number of heads:

E [X ] = E

[
n∑

i=1

Xi

]

=
n∑

i=1

E [Xi ]

=
n∑

i=1

1/2

= n/2 .

Thus, compared to the method used in equation (C.36), indicator random variables
greatly simplify the calculation. We shall use indicator random variables through-
out this book.


