
306 Chapter 14 Augmenting Data Structures

LEFT-ROTATE(T, x)

RIGHT-ROTATE(T, y)

93

42
19

12
6

4 7

x

y

93
19 y

42
11 x

6 4

7

Figure 14.2 Updating subtree sizes during rotations. The link around which the rotation is per-
formed is incident on the two nodes whose size fields need to be updated. The updates are local,
requiring only the size information stored in x , y, and the roots of the subtrees shown as triangles.

The rank 17 is returned.
Since each iteration of the while loop takes O(1) time, and y goes up one level in

the tree with each iteration, the running time of OS-RANK is at worst proportional
to the height of the tree: O(lg n) on an n-node order-statistic tree.

Maintaining subtree sizes

Given the size field in each node, OS-SELECT and OS-RANK can quickly compute
order-statistic information. But unless these fields can be efficiently maintained by
the basic modifying operations on red-black trees, our work will have been for
naught. We shall now show that subtree sizes can be maintained for both insertion
and deletion without affecting the asymptotic running time of either operation.

We noted in Section 13.3 that insertion into a red-black tree consists of two
phases. The first phase goes down the tree from the root, inserting the new node
as a child of an existing node. The second phase goes up the tree, changing colors
and ultimately performing rotations to maintain the red-black properties.

To maintain the subtree sizes in the first phase, we simply increment size[x] for
each node x on the path traversed from the root down toward the leaves. The new
node added gets a size of 1. Since there are O(lg n) nodes on the traversed path,
the additional cost of maintaining the size fields is O(lg n).

In the second phase, the only structural changes to the underlying red-black tree
are caused by rotations, of which there are at most two. Moreover, a rotation is a
local operation: only two nodes have their size fields invalidated. The link around
which the rotation is performed is incident on these two nodes. Referring to the
code for LEFT-ROTATE(T, x) in Section 13.2, we add the following lines:

13 size[y] ← size[x]
14 size[x] ← size[left[x]] + size[right[x]] + 1

Figure 14.2 illustrates how the fields are updated. The change to RIGHT-ROTATE

is symmetric.


