
14.3 Interval trees 313

0 5 10 15 20 25 30

0
5

6
8

15
16

17
19

25
26 26

30
20

19
21

23
9

10
8

3

(a)

[25,30]

[19,20]

[8,9]

[6,10][0,3]

[5,8] [15,23]

[16,21]

[17,19] [26,26]

3 10

10

23

23

30

20

30

26

20
(b)

int

max

Figure 14.4 An interval tree. (a) A set of 10 intervals, shown sorted bottom to top by left endpoint.
(b) The interval tree that represents them. An inorder tree walk of the tree lists the nodes in sorted
order by left endpoint.

Step 3: Maintaining the information

We must verify that insertion and deletion can be performed in O(lg n) time on an
interval tree of n nodes. We can determine max[x] given interval int[x] and the
max values of node x’s children:

max[x] = max(high[int[x]], max[left[x]], max[right[x]]) .

Thus, by Theorem 14.1, insertion and deletion run in O(lg n) time. In fact, updat-
ing the max fields after a rotation can be accomplished in O(1) time, as is shown
in Exercises 14.2-4 and 14.3-1.


