
314 Chapter 14 Augmenting Data Structures

Step 4: Developing new operations

The only new operation we need is INTERVAL-SEARCH(T, i), which finds a node
in tree T whose interval overlaps interval i . If there is no interval that overlaps i in
the tree, a pointer to the sentinel nil[T ] is returned.

INTERVAL-SEARCH(T, i)
1 x ← root[T ]
2 while x "= nil[T ] and i does not overlap int[x]
3 do if left[x] "= nil[T ] and max[left[x]] ≥ low[i]
4 then x ← left[x]
5 else x ← right[x]
6 return x

The search for an interval that overlaps i starts with x at the root of the tree and
proceeds downward. It terminates when either an overlapping interval is found
or x points to the sentinel nil[T ]. Since each iteration of the basic loop takes O(1)
time, and since the height of an n-node red-black tree is O(lg n), the INTERVAL-
SEARCH procedure takes O(lg n) time.

Before we see why INTERVAL-SEARCH is correct, let’s examine how it works
on the interval tree in Figure 14.4. Suppose we wish to find an interval that overlaps
the interval i = [22, 25]. We begin with x as the root, which contains [16, 21] and
does not overlap i . Since max[left[x]] = 23 is greater than low[i] = 22, the loop
continues with x as the left child of the root—the node containing [8, 9], which
also does not overlap i . This time, max[left[x]] = 10 is less than low[i] = 22,
so the loop continues with the right child of x as the new x . The interval [15, 23]
stored in this node overlaps i , so the procedure returns this node.

As an example of an unsuccessful search, suppose we wish to find an interval
that overlaps i = [11, 14] in the interval tree of Figure 14.4. We once again begin
with x as the root. Since the root’s interval [16, 21] does not overlap i , and since
max[left[x]] = 23 is greater than low[i] = 11, we go left to the node containing
[8, 9]. (Note that no interval in the right subtree overlaps i—we shall see why later.)
Interval [8, 9] does not overlap i , and max[left[x]] = 10 is less than low[i] = 11, so
we go right. (Note that no interval in the left subtree overlaps i .) Interval [15, 23]
does not overlap i , and its left child is nil[T ], so we go right, the loop terminates,
and the sentinel nil[T ] is returned.

To see why INTERVAL-SEARCH is correct, we must understand why it suffices
to examine a single path from the root. The basic idea is that at any node x , if int[x]
does not overlap i , the search always proceeds in a safe direction: an overlapping
interval will definitely be found if there is one in the tree. The following theorem
states this property more precisely.


