
312 Chapter 14 Augmenting Data Structures

i i i i

(a)

i

(b)

i

(c)

i′ i′ i′ i′

i′i′

Figure 14.3 The interval trichotomy for two closed intervals i and i ′. (a) If i and i ′ overlap, there
are four situations; in each, low[i] ≤ high[i ′] and low[i ′] ≤ high[i]. (b) The intervals do not overlap,
and high[i] < low[i ′]. (c) The intervals do not overlap, and high[i ′] < low[i].

An interval tree is a red-black tree that maintains a dynamic set of elements, with
each element x containing an interval int[x]. Interval trees support the following
operations.

INTERVAL-INSERT(T, x) adds the element x , whose int field is assumed to contain
an interval, to the interval tree T .

INTERVAL-DELETE(T, x) removes the element x from the interval tree T .

INTERVAL-SEARCH(T, i) returns a pointer to an element x in the interval tree T
such that int[x] overlaps interval i , or the sentinel nil[T ] if no such element is in
the set.

Figure 14.4 shows how an interval tree represents a set of intervals. We shall track
the four-step method from Section 14.2 as we review the design of an interval tree
and the operations that run on it.

Step 1: Underlying data structure

We choose a red-black tree in which each node x contains an interval int[x] and
the key of x is the low endpoint, low[int[x]], of the interval. Thus, an inorder tree
walk of the data structure lists the intervals in sorted order by low endpoint.

Step 2: Additional information

In addition to the intervals themselves, each node x contains a value max[x], which
is the maximum value of any interval endpoint stored in the subtree rooted at x .


